Learning Mobile App Embeddings Using Multi-task Neural Network.

Lecture Notes in Computer Science(2019)

引用 1|浏览0
暂无评分
摘要
Last few years have seen a consistent increase in the availability and usage of mobile application (apps). Mobile operating systems have dedicated stores to host these apps and make them easily discoverable. Also, app developers depict their core features in textual descriptions while consumers share their opinions in form of user reviews. Apart from these inputs, applications hosted on app stores also contain indicators such as category, app ratings, and age ratings which affect the retrieval mechanisms and discoverability of these applications. An attempt is made in this paper to jointly model app descriptions and reviews to evaluate their use in predicting other indicators like app category and ratings. A multi-task neural architecture is proposed to learn and analyze the influence of application's textual data to predict other categorical parameters. During the training process, the neural architecture also learns generic app-embeddings, which aid in other unsupervised tasks like nearest neighbor analysis and app clustering. Various qualitative and quantitative experiments are performed on these learned embeddings to achieve promising results.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要