Dual-drug loaded micelle for combinatorial therapy targeting HIF and mTOR signaling pathways for ovarian cancer treatment

Journal of Controlled Release(2019)

引用 18|浏览4
暂无评分
摘要
Mutations in the tumor protein (TP53) and the mammalian target of rapamycin (mTOR) pathway have been elucidated as driver mutations in ovarian carcinomas that transform into an invasive phenotype under hypoxic conditions. Chetomin (CHE) targets the hypoxic pathway while Everolimus (EVR) acts on the mTOR pathway. Poor aqueous solubilities of both compounds limit their clinical applications. Diblock copolymer nanoplatforms of methoxy poly(ethylene glycol)2000-block-poly (lactic acid)1800 (mPEG2000-b-PLA1800) and (mPEG4000-b-PLA2200) were used to formulate individual and dual drug loaded micelles (DDM) using the solvent evaporation method. The CHE micelles (CHE-M) had a size of 21 nm with CHE loading of 0.5 mg/mL while the EVR micelles (EVR-M) and the DDM had a size around 35 and 39 nm, respectively, with EVR loading up to 2.3 mg/mL. The anti-proliferative effects of these micelles have been tested in vitro in three ovarian cell lines (ES2, OVCAR3 and TOV21G) with the DDM exhibiting a strong synergistic anti-proliferative effect in the ES2 and the TOV21G cells. The DDM were able to significantly induce tumor regression in ES2 ovarian xenograft mouse models by inhibiting angiogenesis and inducing apoptosis when compared to the individual micelles. The inhibition of hypoxia inducible factor (HIF) and the mTOR pathways has been elucidated using immunohistochemistry studies. In conclusion, we have developed a mPEG-b-PLA based micellar nanoplatform that could prevent drug resistance by delivering multiple drugs at therapeutically relevant concentrations for effectively treating ovarian carcinomas.
更多
查看译文
关键词
Polymeric micelle,Multidrug loaded micelle,Combinatorial therapy,Ovarian cancer,HIF pathway inhibition,mTOR pathway inhibition
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要