Gold-nanorod-enhanced Raman spectroscopy encoded micro-quartz pieces for the multiplex detection of biomolecules

Analytical and Bioanalytical Chemistry(2019)

引用 6|浏览3
暂无评分
摘要
The rapid analysis and detection of biomolecules has become increasingly important in biological research. Hence, here we propose a novel suspension array method that is based on gold nanorod (AuNR)-enhanced Raman spectroscopy and uses micro-quartz pieces (MQPs) as microcarriers. AuNRs and Raman reporter molecules are coupled together by Au–S bonds to obtain surface-enhanced Raman scattering labels (SERS labels). The SERS labels are then assembled on the surfaces of the MQPs via electrostatic interactions, yielding encoded MQPs. Experimental results showed that the encoded MQPs could be decoded using a Raman spectrometer. A multiplex immunoassay experiment demonstrated the validity and specificity of these encoded MQPs when they were used for bioanalysis. In concentration gradient experiments, the proposed method was found to give a linear concentration response to the target biomolecule at target concentrations of 0.46875–30 nM, and the detection limit was calculated to be 1.78 nM. The proposed method utilizes MQPs as carriers rather than conventional microbeads, which allows the interference caused by the background fluorescence of microbeads to be eliminated. The fluorescence of the encoded MQPs can be simply, rapidly, and inexpensively quantified using fluorescence microscopy. By dividing the quantitative and qualitative detection of biomolecules into two independent channels, crosstalk between the encoded signal and the labeled signal is averted and high decoding accuracy and detection sensitivity are guaranteed. Graphical abstract
更多
查看译文
关键词
Suspension array,Gold nanorods,Raman spectroscopy,Surface-enhanced Raman scattering,Encoded micro-quartz pieces
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要