谷歌浏览器插件
订阅小程序
在清言上使用

Identification of Loci and Candidate Genes Responsible for Pod Dehiscence in Soybean via Genome-Wide Association Analysis Across Multiple Environments.

FRONTIERS IN PLANT SCIENCE(2019)

引用 25|浏览13
暂无评分
摘要
Pod dehiscence (shattering) is the main cause of serious yield loss during the soybean mechanical harvesting process. A better understanding of the genetic architecture and molecular mechanisms of pod dehiscence is of great significance for soybean breeding. In this study, genome-wide association analysis (GWAS) with NJAU 355K SoySNP array was performed to detect single nucleotide polymorphisms (SNPs) associated with pod dehiscence in an association panel containing 211 accessions across five environments. A total of 163 SNPs were identified as significantly associated with pod dehiscence. Among these markers, 136 SNPs identified on chromosome 16 were located in the known QTL qPDH1 . One, one, three, eleven, three, one, three, three and one SNPs were distributed on chromosome 1, 4, 6, 8, 9, 11, 17, 18, and 20, respectively. Favorable SNPs and six haplotypes were identified based on ten functional SNPs; among those Hap2 and Hap3 were considered as optimal haplotypes. In addition, based on GWAS results, the candidate gene Glyma09g06290 was identified. Quantitative real-time PCR (qRT-PCR) results and polymorphism analysis suggested that Glyma09g06290 might be involved in pod dehiscence. Furthermore, a derived cleaved amplified polymorphic sequences (dCAPS) marker for Glyma09g06290 was developed. Overall, the loci and genes identified in this study will be helpful in breeding soybean accessions resistant to pod dehiscence.
更多
查看译文
关键词
soybean,pod dehiscence,GWAS,haplotype analysis,Glyma09g06290,polymorphism analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要