谷歌浏览器插件
订阅小程序
在清言上使用

Combined Face Based and Nodal Based Discretizations on Hybrid Meshes for Non-Isothermal Two-Phase Darcy Flow Problems

Modélisation mathématique et analyse numérique(2019)

引用 1|浏览2
暂无评分
摘要
In the last 20 years many discretization schemes have been developed to approximate the Darcy fluxes on polyhedral cells in heterogeneous anisotropic porous media. Among them, we can distinguished cell based approaches like the Two Point Flux Approximation (TPFA) or the Multi Point Flux Approximation (MPFA) schemes, face based approaches like the Hybrid Finite Volume (HFV) scheme belonging to the family of Hybrid Mimetic Mixed methods and nodal based discretizations like the Vertex Approximate Gradient (VAG) scheme. They all have their own drawbacks and advantages which typically depend on the type of cells and on the anisotropy of the medium. In this work, we propose a new methodology to combine the VAG and HFV discretizations on arbitrary subsets of cells or faces in order to choose the best suited scheme in different parts of the mesh. In our approach the TPFA discretization is considered as an HFV discretization for which the face unknowns can be eliminated. The coupling strategy is based on a node to face interpolation operator at the interfaces which must be chosen to ensure the consistency, the coercivity and the limit conformity properties of the combined discretization. The convergence analysis is performed in the gradient discretization framework and convergence is proved for arbitrary cell or face partitions of the mesh. For face partitions, an additional stabilisation local to the cell is required to ensure the coercivity while for cell partitions no additional stabilisation is needed. The framework preserves at the interface the discrete conservation properties of the VAG and HFV schemes with fluxes based on local to each cell transmissibility matrices. This discrete conservative form allows to naturally extend the VAG and HFV discretizations of two-phase Darcy flow models to the combined VAG–HFV schemes. The efficiency of our approach is tested for single phase and immiscible two-phase Darcy flows on 3D meshes using a combination of the HFV and VAG discretizations as well as for non-isothermal compositional liquid gas Darcy flows on a vertical 2D cross-section of the Bouillante geothermal reservoir (Guadeloupe) using a combination of the TPFA and VAG discretizations.
更多
查看译文
关键词
Finite Volume,gradient discretization,Darcy flow,two-phase Darcy flow,hybrid meshes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要