Chrome Extension
WeChat Mini Program
Use on ChatGLM

Spatial UBE2N Protein Expression Indicates Genomic Instability in Colorectal Cancers

BMC cancer(2019)

Cited 5|Views23
No score
Abstract
BACKGROUND:One major hallmark of colorectal cancers (CRC) is genomic instability with its contribution to tumor heterogeneity and therapy resistance. To facilitate the investigation of intra-sample phenotypes and the de novo identification of tumor sub-populations, imaging mass spectrometry (IMS) provides a powerful technique to elucidate the spatial distribution patterns of peptides and proteins in tissue sections. METHODS:In the present study, we analyzed an in-house compiled tissue microarray (n = 60) comprising CRCs and control tissues by IMS. After obtaining protein profiles through direct analysis of tissue sections, two validation sets were used for immunohistochemical evaluation. RESULTS:A total of 28 m/z values in the mass range 800-3500 Da distinguished euploid from aneuploid CRCs (p < 0.001, ROC AUC values < 0.385 or > 0.635). After liquid chromatograph-mass spectrometry identification, UBE2N could be successfully validated by immunohistochemistry in the initial sample cohort (p = 0.0274, ROC AUC = 0.7937) and in an independent sample set of 90 clinical specimens (p = 0.0070, ROC AUC = 0.6957). CONCLUSIONS:The results showed that FFPE protein expression profiling of surgically resected CRC tissue extracts by MALDI-TOF MS has potential value for improved molecular classification. Particularly, the protein expression of UBE2N was validated in an independent clinical cohort to distinguish euploid from aneuploid CRCs.
More
Translated text
Key words
Imaging mass spectrometry,Genomic instability,Aneuploidy,UBE2N
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined