On the excitation dependence of fluorescence spectra of meso-tetrapyridyl zinc (II) porphyrin and its relation with hydrogen bonding and outlying decoration.

Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy(2020)

引用 10|浏览17
暂无评分
摘要
Zinc porphyrins are potential candidates for boosting the advancement of various technological applications, including those exploring the molecule's radiative emissions. In this work, the excitation dependence of fluorescence spectra from 5,10,15,20-meso-tetrapyridyl zinc(II) porphyrin dissolved in a binary solvent mixture of CHCl3: MeOH, is reported. Important modifications in the profiles of the fluorescence bands are observed after exciting the molecules in a broad wavelength range from 350 to 565 nm. We attribute such modifications to the existence of two distinct relaxation pathways, related to two quasi-degenerated potential energy surfaces (PES) in the ZnTPyP's first excited state whose population rates changes for different excitation wavelengths. We also observed that by changing the CHCl3:MeOH proportion in the binary mixture, a quenching mechanism mediated by the MeOH hydrogen bondings and ZnTPyP takes place, which allows for tuning the excitation dependence of the aforementioned relaxations pathways. Moreover, our data confirm that the addition of outlying RuCl(dppb)(bipy) ruthenium complex linked to the pyridyl moieties of the ZnTPyP ring is also an excellent strategy to modify the excitation dependence of the fluorescence relaxation pathways.
更多
查看译文
关键词
Zinc porphyrin,Fluorescence spectroscopy,Excitation dependence,Supramolecular structure,Hydrogen bonding
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要