Properties of interpenetrating polymer networks associating fibrin and silk fibroin networks obtained by a double enzymatic method.

Materials science & engineering. C, Materials for biological applications(2019)

引用 10|浏览8
暂无评分
摘要
Fibrin gels are of interest as biomaterials for regenerative medicine but present poor mechanical properties, undergo fast degradation and strongly contract in presence of cells. To face these drawbacks, a fibrin network can be associated with another polymer network, in an Interpenetrating Polymer Network (IPN) architecture. In this study, we report the properties of an IPN comprising a fibrin (Fb) network and a silk fibroin (SF) network. This IPN is synthesized through the action of 2 enzymes, each one being specific of one protein gelation, i.e. thrombin (Tb) for Fb gelation, and horseradish peroxidase (HRP) for SF gelation. The effective formation of both Fb and SF networks in an IPN architecture was first verified at qualitative and quantitative levels. The resulting IPN was easily manipulable, displayed high viscoelastic properties and showed homogeneous macro- and micro-structure. Then the degradability of the IPN by two proteases, thermolysin (TL) and trypsin (TRY), obeying different mechanisms was presented. Finally, two-dimensional culture of human fibroblasts on the IPN surface induced little material contraction, while fibroblasts showed healthy morphology, displayed high viability and produced mature extracellular matrix (ECM) proteins. Taken together, the results suggest that this new IPN have a strong potential for tissue engineering and regenerative medicine.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要