Impaired D2 receptor-dependent dopaminergic transmission in prefrontal cortex of awake mouse model of Parkinson's disease.

BRAIN(2019)

引用 14|浏览23
暂无评分
摘要
The loss-of-function mutation in PARK7/DJ-1 is one of the most common causes of autosomal recessive Parkinson's disease, and patients carrying PARK7 mutations often exhibit both a progressive movement disorder and emotional impairment, such as anxiety. However, the causes of the emotional symptom accompanying PARK7-associated and other forms of Parkinson's disease remain largely unexplored. Using two-photon microscopic Ca2+ imaging in awake PARK7(-/-) and PARK7(+/+) mice, we found that (i) PARK7(-/-) neurons in the frontal association cortex showed substantially higher circuit activity recorded as spontaneous somatic Ca2+ signals; (ii) both basal and evoked dopamine release remained intact, as determined by both electrochemical dopamine recordings and high performance liquid chromatography in vivo; (iii) D2 receptor expression was significantly decreased in postsynaptic frontal association cortical neurons, and the hyper-neuronal activity were rescued by D2 receptor intervention using either local pharmacology or viral D2 receptor over-expression; and (iv) PARK7(-/-) mice showed anxiety-like behaviours that were rescued by either local D2 receptor pharmacology or overexpression. Thus, for first time, we demonstrated a robust D2 receptor-dependent phenotype of individual neurons within the prefrontal cortex circuit in awake parkinsonian mice that linked with anxiety. Our work sheds light on early-onset phenotypes and the mechanisms underlying Parkinson's disease by imaging brain circuits in an awake mouse model.
更多
查看译文
关键词
Parkinson's disease,dopamine release,dopamine receptor,anxiety,two-photon imaging
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要