Biodegradable reduction-responsive polymeric micelles for enhanced delivery of melphalan to retinoblastoma cells.

INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES(2019)

引用 10|浏览3
暂无评分
摘要
Melphalan (MEL) is an effective chemotherapeutic agent for treatment of retinoblastoma (Rb) which is the most common childhood malignancy. However, the inherent cardiopulmonary toxicity and hazardous integration limit its therapeutic effect on RB. N-Acetylheparosan (AH), a natural heparin-like polysaccharide in mammals with long circulation effect and good biocompatibility, was linked by d-alpha-tocopherol acid succinate (VES) via and cystamine (CYS) to synthesize reduction-responsive N-acetylheparosan-CYS-Vitamin E succinate (AHV) copolymers. In addition, CYS was replaced by adipic acid dihydrazide (ADH) to obtain a control of non-reduction-responsive polymers N-acetylheparosan-ADH-Vitamin E succinate (ADV). MEL-loaded AHV micelles (MEL/AHV) as well as ADV micelles (MEL/ADV) were prepared with small particle size and high drug loading content. In vitro drug release showed that MEL/AHV micelles presented obvious reduction-triggered release behavior compared with MEL/ADV. In vitro antitumor effects were investigated using WERI-Rb-1 retinoblastoma cells. Cytotoxicity experiments showed that the IC50 of MEL/AHV was significantly lower than that of free MEL and MEL/ADV, suggesting that MEL/AHV enhanced the cytotoxicity against retinoblastoma cells. Furthermore, MEL/AHV micelles were more easily uptaken by multiple pathways compared with MEL/ADV and free MEL. Therefore, MEL/AHV might be a potential delivery system for enhanced delivery of melphalan to Rb cells. (C) 2019 Elsevier B.V. All rights reserved.
更多
查看译文
关键词
Retinoblastoma,Melphalan,Reduction-responsive,Polymeric micelles,Drug delivery
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要