谷歌浏览器插件
订阅小程序
在清言上使用

A Novel Approach for Detection of Brucella Using a Real-Time Recombinase Polymerase Amplification Assay.

Molecular and Cellular Probes(2019)

引用 5|浏览11
暂无评分
摘要
Brucella, the etiological agent of brucellosis, is an important zoonosis pathogen worldwide. Brucella infects humans and various domestic and wild animals, and represents a great threat to public health and animal husbandry. In the present study, we developed a real-time recombinase polymerase amplification (RPA) assay for the detection of Brucella. The assay targeted the bcsp31 gene of Brucella, and an RPA exo probe and a pair of primers were selected for assay validation. RPA sensitivity and specificity were evaluated using plasmid standards, Brucella representative strains, and non-Brucella strains. The RPA assay achieved a detection limit of 17 molecules in 95% of cases based on probit analysis, and could successfully distinguish 18 representative Brucella strains (B. abortus biovars 1, 2, 3, 4, 5, 6, 7 and 9, B. melitensis biovars 1, 2 and 3, B. suis biovars 1, 2, 3 and 4, B. canis, B. neotomae and B. ovis), and four Brucella vaccine strains (A19, S19, S2 and M5). A total of 52 Brucella field strains were detected by real-time PCR and RPA in parallel, and compared with real-time PCR, the sensitivity of the RPA assay was 94% (49/52). Thus, this RPA assay may be a rapid, sensitive, and specific tool for the prevention and control of Brucellosis.
更多
查看译文
关键词
Brucella,bcsp31 gene,RPA,Exo probe
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要