Functional heritage: the evolution of chimeric RNA into a gene.

RNA BIOLOGY(2020)

引用 8|浏览30
暂无评分
摘要
Once believed to be unique features of neoplasia, chimeric RNAs are now being discovered in normal physiology. We speculated that some chimeric RNAs may be functional precursors of genes, and that forming chimeric RNA at the transcriptional level may be a 'trial' mechanism before the functional element is fixed into the genome. Supporting this idea, we identified a chimeric RNA, HNRNPA1L2-SUGT1 (H-S), whose sequence is highly similar to that of a 'pseudogene' MRPS31P5. Sequence analysis revealed that MRPS31P5 transcript is more similar to H-S chimeric RNA than its 'parent' gene, MRPS31. Evolutionarily, H-S precedes MRPS31P5, as it can be detected bioinformatically and experimentally in marmosets, which do not yet possess MRPS31P5 in their genome. Conversely, H-S is minimally expressed in humans, while instead, MRPS31P5 is abundantly expressed. Silencing H-S in marmoset cells resulted in similar phenotype as silencing MRPS31P5 in human cells. In addition, whole transcriptome analysis and candidate downstream target validation revealed common signalling pathways shared by the two transcripts. Interestingly, H-S failed to rescue the phenotype caused by silencing MPRS31P5 in human and rhesus cells, whereas MRPS31P5 can at least partially rescue the phenotype caused by silencing H-S in marmoset cells, suggesting that MRPS31P5 may have further evolved into a distinct entity. Thus, multiple lines of evidence support that MRPS31P5 is not truly a pseudogene of MRPS31, but a likely functional descendent of H-S chimera. Instead being a gene fusion product, H-S is a product of cis-splicing between adjacent genes, while MRPS31P5 is likely produced by genome rearrangement.
更多
查看译文
关键词
Chimeric RNA,gene evolution,SUGT1,RNA-Seq
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要