Modular click chemistry libraries for functional screens using a diazotizing reagent

NATURE(2019)

引用 217|浏览28
暂无评分
摘要
Click chemistry is a concept in which modular synthesis is used to rapidly find new molecules with desirable properties 1 . Copper( i )-catalysed azide–alkyne cycloaddition (CuAAC) triazole annulation and sulfur( vi ) fluoride exchange (SuFEx) catalysis are widely regarded as click reactions 2 – 4 , providing rapid access to their products in yields approaching 100% while being largely orthogonal to other reactions. However, in the case of CuAAC reactions, the availability of azide reagents is limited owing to their potential toxicity and the risk of explosion involved in their preparation. Here we report another reaction to add to the click reaction family: the formation of azides from primary amines, one of the most abundant functional groups 5 . The reaction uses just one equivalent of a simple diazotizing species, fluorosulfuryl azide 6 – 11 (FSO 2 N 3 ), and enables the preparation of over 1,200 azides on 96-well plates in a safe and practical manner. This reliable transformation is a powerful tool for the CuAAC triazole annulation, the most widely used click reaction at present. This method greatly expands the number of accessible azides and 1,2,3-triazoles and, given the ubiquity of the CuAAC reaction, it should find application in organic synthesis, medicinal chemistry, chemical biology and materials science.
更多
查看译文
关键词
Combinatorial libraries,Synthetic chemistry methodology,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要