A 21-day sub-acute, whole-body inhalation exposure to printer-emitted engineered nanoparticles in rats: Exploring pulmonary and systemic effects

NanoImpact(2019)

引用 18|浏览39
暂无评分
摘要
Engineered nanomaterials (ENMs) used in toners to improve their performance are released in the air during laser printer use. ENMs play an important catalytic role in the breakdown of the toner polymer and subsequent rearrangement of organic compounds as well as in the formation of reactive oxygen species (ROS). Cellular, animal, and human occupational exposure studies have shown that such printer-emitted particles (PEPs) induce inflammation, systemic oxidative stress, and genotoxicity, as well as, increase frequency of coughing, wheezing, and upper airway symptoms, raising concerns about their long-term impact on human health. No safety thresholds or regulatory guidelines currently exist for PEPs. In this study, Sprague-Dawley rats were exposed (by whole-body inhalation) to PEPs 5 h/day for up to 21 days using an exposure platform previously developed by the authors. The control group comprised of an equal number of rats exposed to high-efficiency particulate air (HEPA) filtered air. The PEPs had a mean particle diameter of approximately 45 nm, and a total particle number concentration ranging from 4 to 21 × 105 #/cm3. The maximum total volatile organic compound (tVOCs) concentration was 363.2 ± 162 ppb. The Multiple-Path Particle Dosimetry Model (MPPD) estimated the deposited fraction of PEPs to be around 7, 6 and 21% in the head, tracheobronchial (TB) and alveolar regions, respectively. Analysis of biochemical markers in the nasal and bronchoalveolar lavage fluids (NLF, BALF) of PEPs-exposed animals showed only mild oxidative stress and inflammation. No damage was detected in the histological and chemiluminescence analysis of lung and heart tissues of PEPs-exposed animals. Pro- and anti-inflammatory cytokines and chemokines, such as Interleukin (IL) 1β, IL-12, IL-18, MIP-1α, MIP-2, GRO/KC, and Fractalkine were found to be up-/down-regulated in NLF and BALF of the PEPs-exposed animals. Also, serum biomarkers of oxidative stress and inflammation, such as 8-isoprostane, 4-hydroxynonemal, and Leukotriene B4 were elevated in PEPs-exposed animals. In conclusion, following exposure to PEPs, there was modest lung injury and inflammation in the respiratory tract. Specifically, changes in expression of certain cytokines and chemokines, along with serum levels of 8-isoprostane, were the most significant adverse effects reported following exposure to PEPs.
更多
查看译文
关键词
Laser printer emissions,Engineered nanoparticles,Lung,Inflammation,Oxidative stress,Exposure biology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要