Water-Tunable Highly Sub-Wavelength Spiral Resonator For Magnetic Field Enhancement Of Mri Coils At 1.5 T

IEEE ACCESS(2019)

引用 16|浏览6
暂无评分
摘要
In magnetic resonance imaging (MRI), several studies have demonstrated that the metamaterial-based structures can effectively improve the sensitivity, and thus the signal-to-noise ratio (SNR), of receiving radio-frequency (RF) coils. However, the use of metamaterials for this type of the MRI application is often limited due to the bulkiness of the metamaterial structure at RF wavelengths and a lack of frequency tunability of the final design. In this work, we propose a planar compact sub-wavelength (< lambda/50) spiral resonator to increase the sensitivity of a receive coil with frequency tunability for the 1.5 T MRI. Its double-layered spiral design with a cavity embedded in the substrate between the two spirals allows water deposition for frequency tuning. At the resonance frequency of 64 MHz, the spiral resonator shows a 24% improvement in terms of the B-1(-) field at the depth of 30 mm into a load experimentally. Even at a penetration depth as much as 60 mm (deep brain in the case of head imaging), an enhancement of 9% was observed. Moreover, the magnetic field enhancement comes with a decrease (10%) in specific absorption rate (SAR). In terms of tuning, by controlling the water level in the cavity, the proposed spiral resonator shows a wide tuning range of 35 MHz, centered around 64 MHz, with high tunability sensitivity (2.4-0.75 MHz/ml or 15-4.8 MHz/mm), which is due to the fact that the tuning cavity is located between the two spirals, where the fields are highly confined.
更多
查看译文
关键词
MRI, resonator, RF lens, RF coil, spiral
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要