谷歌浏览器插件
订阅小程序
在清言上使用

Recent Advances in Membrane Technologies for Hydrogen Purification

International journal of hydrogen energy(2020)

引用 181|浏览17
暂无评分
摘要
Planet Earth is facing accelerated global warming due to greenhouse gas emissions from human activities. The United Nations agreement at the Paris Climate Conference in 2015 highlighted the importance of reducing CO2 emissions from fossil fuel combustion. Hydrogen is a clean and efficient energy carrier and a hydrogen-based economy is now widely regarded as a potential solution for the future of energy security and sustainability. Although hydrogen can be produced from water electrolysis, economic reasons dictate that most of the H2 produced worldwide, currently comes from the steam reforming of natural gas and this situation is set to continue in the foreseeable future. This production process delivers a H2-rich mixture of gases from which H2 needs to be purified up to the ultra-high purity levels required by fuel cells (99.97%). This driving force pushes for the development of newer H2 purification technologies that can be highly selective and more energy efficient than the traditional energy intensive processes of pressure swing adsorption and cryogenic distillation. Membrane technology appears as an obvious energy efficient alternative for producing the ultra-pure H2 required for fuel cells. However, membrane technology for H2 purification has still not reached the maturity level required for its ubiquitous industrial application. This review article covers the major aspects of the current research in membrane separation technology for H2 purification, focusing on four major types of emerging membrane technologies (carbon molecular sieve membranes; ionic-liquid based membranes; palladium-based membranes and electrochemical hydrogen pumping membranes) and establishes a comparison between them in terms of advantages and limitations.
更多
查看译文
关键词
Hydrogen purification,Carbon molecular sieve membranes,Ionic-liquid based membranes,Palladium-based membranes,Electrochemical hydrogen pumping membranes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要