In-depth TEM Investigation on Structural Inhomogeneity within a Primary LixNi0.835Co0.15Al0.015O2 Particle: Origin of Capacity Decay during High-rate Discharge.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION(2020)

引用 18|浏览10
暂无评分
摘要
The structural stability of cathode materials during electrochemical reactions, in particular, under high-rate discharge, is pertinent to the design and development of new electrode materials. This study investigates the structural inhomogeneity that develops within a single LiNi0.835Co0.15Al0.015O2 (NCA83) particle during a fast discharging process under different cutoff voltages. Some of the NCA83 particles discharged from a high cutoff voltage (4.8 V) developed surface areas in which the layered structure was recovered, although the interiors retained the degraded spinel structure. These micro- and nano-scale structural inversions from high cutoff voltage seem highly correlated with structural evolutions in the initial charged state, and may ultimately degrade the cycling stability. This study advances understanding of the structural inhomogeneity within primary particles during various electrochemical processes and may facilitate the development of new Ni-rich cathode materials.
更多
查看译文
关键词
Ni-rich cathode materials,high-rate discharge,lithium-ion batteries,structural inhomogeneity,TEM depth profiling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要