Macrophage derived CXCL9 and CXCL10 are required for anti-tumor immune responses following immune checkpoint blockade.

CLINICAL CANCER RESEARCH(2020)

引用 308|浏览91
暂无评分
摘要
Purpose: Response rates to immune checkpoint blockade (ICB; anti-PD-1/anti-CTLA-4) correlate with the extent of tumor immune infiltrate, but the mechanisms underlying the recruitment of T cells following therapy are poorly characterized. A greater understanding of these processes may see the development of therapeutic interventions that enhance T-cell recruitment and, consequently, improved patient outcomes. We therefore investigated the chemokines essential for immune cell recruitment and subsequent therapeutic efficacy of these immuno therapies. Experimental Design: The chemokines upregulated by dual PD-1/CTLA-4 blockade were assessed using NanoString-based analysis with results confirmed at the protein level by flow cytometry and cytometric bead array. Blocking/neutralizing antibodies confirmed the requirement for key chemokines/cytokines and immune effector cells. Results were confirmed in patients treated with immune checkpoint inhibitors using single-cell RNA-sequencing (RNA-seq) and paired survival analyses. Results: The CXCR3 ligands, CXCL9 and CXCL10, were significantly upregulated following dual PD-1/CTLA-4 blockade and both CD8(+) T-cell infiltration and therapeutic efficacy were CXCR3 dependent. In both murine models and patients undergoing immunotherapy, macrophages were the predominant source of CXCL9 and their depletion abrogated CD8(+) T-cell infiltration and the therapeutic efficacy of dual ICB. Single-cell RNA-seq analysis of patient tumor-infiltrating lymphocytes (TIL) revealed that CXCL9/10/11 was predominantly expressed by macrophages following ICB and we identified a distinct macrophage signature that was associated with positive responses to ICB. Conclusions: These data underline the fundamental importance of macrophage-derived CXCR3 ligands for the therapeutic efficacy of ICB and highlight the potential of manipulating this axis to enhance patient responses.
更多
查看译文
关键词
antitumor immune responses,cxcl9,cxcl10,immune responses,macrophage-derived
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要