Intramolecular Versus Intermolecular Triplet Fusion In Multichromophoric Photochemical Upconversion

JOURNAL OF PHYSICAL CHEMISTRY C(2019)

引用 41|浏览28
暂无评分
摘要
Photon upconversion is a process that creates high-energy photons under low photon energy excitation. The effect of molecular geometry on the triplet fusion upconversion process has been investigated in this work through the design and synthesis of four new 9,10-diphenylanthracene (DPA) derivatives by employing platinum octaethylporphyrin as the triplet sensitizer. These new emitter molecules containing multiple DPA subunits linked together via a central benzene core exhibit high fluorescence quantum yields. Interestingly, large differences in the triplet fusion upconversion performance were observed between the derivatives with the meta-substituted dimer showing the closest performance to the DPA reference. The differences are discussed in terms of the statistical probability for obtaining a high-energy singlet excited state from triplet fusion, f, for both inter- and intramolecular processes and the effect of magnetic field on the upconversion efficiency. These results demonstrate the challenges to be overcome in improving triplet fusion upconversion efficiency based on multichromophoric emitter systems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要