Quantum state correction using a measurement-based feedforward mechanism

PHYSICAL REVIEW A(2019)

引用 7|浏览39
暂无评分
摘要
One of the weaknesses of quantum optical state postselection schemes is the low success probability. Typically there is a trade-off between amplifier properties such as success probability and output state fidelity. However, here we present a state comparison amplifier for optical coherent states, which features an active measurement and feedforward mechanism to correct for errors made during the initial amplification. The simple and relatively low latency mechanism allows us to correct for a binary phase alphabet. We demonstrate a significant simultaneous improvement in the amplifier characteristic parameters: output state fidelity, correct state fraction, and success probability. This demonstrates that nondeterministic quantum amplification can be enhanced significantly by measurement and feedforward.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要