Variance Reduction In Bipartite Experiments Through Correlation Clustering

ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019)(2019)

引用 52|浏览243
暂无评分
摘要
Causal inference in randomized experiments typically assumes that the units of randomization and the units of analysis are one and the same. In some applications, however, these two roles are played by distinct entities linked by a bipartite graph. The key challenge in such bipartite settings is how to avoid interference bias, which would typically arise if we simply randomized the treatment at the level of analysis units. One effective way of minimizing interference bias in standard experiments is through cluster randomization, but this design has not been studied in the bipartite setting where conventional clustering schemes can lead to poorly powered experiments. This paper introduces a novel clustering objective and a corresponding algorithm that partitions a bipartite graph so as to maximize the statistical power of a bipartite experiment on that graph. Whereas previous work relied on balanced partitioning, our formulation suggests the use of a correlation clustering objective. We use a publicly-available graph of Amazon user-item reviews to validate our solution and illustrate how it substantially increases the statistical power in bipartite experiments.
更多
查看译文
关键词
correlation clustering,statistical power,bipartite graph
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要