Shear Stress in Bone Marrow has a Dose Dependent Effect on cFos Gene Expression in In Situ Culture

Cellular and Molecular Bioengineering(2019)

引用 5|浏览10
暂无评分
摘要
Introduction Mechanical stimulation of bone is necessary to maintain its mass and architecture. Osteocytes within the mineralized matrix are sensors of mechanical deformation of the hard tissue, and communicate with cells in the marrow to regulate bone remodeling. However, marrow cells are also subjected to mechanical stress during whole bone loading, and may contribute to mechanically regulated bone physiology. Previous results from our laboratory suggest that mechanotransduction in marrow cells is sufficient to cause bone formation in the absence of osteocyte signaling. In this study, we investigated whether bone formation and altered marrow cell gene expression response to stimulation was dependent on the shear stress imparted on the marrow by our loading regime. Methods Porcine trabecular bone explants were cultured in an in situ bioreactor for 5 or 28 days with stimulation twice daily. Gene expression and bone formation were quantified and compared to unstimulated controls. Correlation was used to assess the dependence on shear stress imparted by the loading regime calculated using computational fluid dynamics models. Results Vibratory stimulation resulted in a higher trabecular bone formation rate ( p = 0.01) and a greater increase in bone volume fraction ( p = 0.02) in comparison to control explants. Marrow cell expression of cFos increased with the calculated marrow shear stress in a dose-dependent manner ( p = 0.002). Conclusions The results suggest that the shear stress due to interactions between marrow cells induces a mechanobiological response. Identification of marrow cell mechanotransduction pathways is essential to understand healthy and pathological bone adaptation and remodeling.
更多
查看译文
关键词
Mechanobiology,Bone adaptation,Trabecular bone,Gene regulation,Computational modeling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要