DISCOL experiment revisited: Assessing the temporal scale of deep-sea mining impacts on sediment biogeochemistry

Biogeosciences Discussions(2019)

引用 1|浏览12
暂无评分
摘要
Abstract. Deep-sea mining for polymetallic nodules is expected to have severe environmental impacts because in addition to the nodules, benthic fauna as well as the upper reactive sediment layer is removed through the mining operation, and blanketed by resettling material from the suspended sediment plume. This study aims to provide a holistic assessment of the biogeochemical recovery after a disturbance event by applying prognostic simulations based on an updated diagenetic background model and validated with novel (micro)-biological data. It was found that the recovery strongly depends on the impact type; complete removal of the reactive surface sediment reduces seafloor nutrient fluxes over centuries, while geochemical processes after resuspension and mixing of the surface sediment are near pre-impact state one year after the disturbance. Furthermore, the geochemical impact in the DISCOL area would be mitigated to some degree by a clay-bound Fe(II)-reaction layer, impeding the downward diffusion of oxygen, thus stabilizing the redox zonation of the sediment during transient post-impact recovery. The interdisciplinary (geochemical, numerical and biological) approach highlights the closely linked nature of benthic ecosystem functions, e.g. through bioturbation, microbial biomass and nutrient fluxes, which is also of great importance for the system recovery.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要