Beyond 400 Gb/s Direct Detection over 80km for Data Center Interconnect Applications

Journal of Lightwave Technology(2020)

引用 24|浏览33
暂无评分
摘要
Due to the growing demand for cloud services with high availability, high connection speed and low latency, distributed data-centers have emerged as a key architecture for future optical networks. This architecture relies on power and cost-efficient solutions for 400 Gb/s client interfaces over distances up to 80 km which can be densely wavelength-division multiplexed (WDM) in the C-band. Recently, single side band (SSB) direct detection (DD) has been considered as an attractive transmission scheme for achieving data rates beyond 100 Gb/s per channel due to its capability of electronic dispersion compensation. However, as SSB DD schemes utilize only a single polarization for data transmission, achieving 400 Gb/s per channel requires a baudrate beyond 80 Gbaud, which might reduce the effectiveness of the commonly used signal-signal beat interference (SSBI) cancellation techniques such as iterative SSBI cancellation or Kramers-Kronig algorithm due to the imperfection of Tx drivers, modulator and Rx front-end. In this paper, through effective Tx calibration and Rx DSP, we have achieved for the first time a net data rate per channel above 400 Gb/s with a 64 QAM signal at 85 Gbaud using a single photodetector (PD) at the receiver. In addition, a WDM transmission consisting of 5 channels at 100 GHz spacing was successfully conducted. This result indicates that SSB DD is an effective transmission technique for high capacity data center interconnect (DCI) applications.
更多
查看译文
关键词
Calibration,Bandwidth,Finite impulse response filters,Amplitude modulation,Data centers,Wavelength division multiplexing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要