Chemical Dissolution of Pt(111) during Potential Cycling under Negative pH Conditions Studied by Operando X-ray Photoelectron Spectroscopy

JOURNAL OF PHYSICAL CHEMISTRY C(2019)

引用 19|浏览10
暂无评分
摘要
Dissolution of a platinum catalyst is a major degradation mechanism of fuel cells, but the exact reaction mechanism has remained unclear. Here, electrochemical ambient pressure X-ray photoelectron spectroscopy (EC-APXPS) was utilized to provide direct information on chemical species on a single-crystal Pt(111) electrode under extremely low pH conditions. Measurements were conducted using a novel condensed electrolyte film electrochemical cell applying work function measurement as a loss-free probe for electrochemical potential. We show that platinum can dissolve chemically as Pt2+ ion during potential cycling and redeposit as Pt2+ at the onset potential for cathodic reactions. The dissolution of Pt does not require electrochemical oxidation via oxide place exchange. In contrast, the adsorption of oxygenated species (OH* or O*) at the onset potential for anodic reactions is a sufficient prerequisite to the dissolution. These results provide new insight into the degradation mechanism of Pt under extremely low pH conditions, predicted by the Pourbaix diagram, having practical applications to the durability of Pt-based catalysts in electrochemical energy conversion devices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要