谷歌浏览器插件
订阅小程序
在清言上使用

Sustainable Use of the Spent Mushroom Substrate of Pleurotus Florida for Production of Lignocellulolytic Enzymes

Journal of basic microbiology(2019)

引用 20|浏览4
暂无评分
摘要
Spent mushroom substrate (SMS), a major byproduct of the mushroom industry, is a lignocellulosic biomass, which contains approximately 57-74.3% of holocellulose fraction. This study was aimed at utilizing SMS of Pleurotus florida for recovery of lignocellulolytic enzymes and sugars and also as a substrate for production of cellulolytic enzymes using different isolates of Trichoderma and Aspergillus under solid-state fermentation (SSF). SMS of P. florida extracts contained significant amounts of laccase (3,015.8 +/- 29.5 U/g SMS) and xylanase (1,187.9 +/- 12 U/g SMS) activity. Crystallinity pattern and chemical changes in SMS revealed that SMS had a lower crystallinity index (34.2%) as compared with the raw biomass (37.8%), which, in turn, helps in enhancing the accessibility of cellulolytic enzymes to holocellulose. Among the isolates, Trichoderma longibrachiatum A-01 showed maximum activity of endoglucanase (220.4 +/- 5.9 U/mg), exoglucanase (78.5 +/- 3.2 U/mg) and xylanase (1,550.4 +/- 11.6 U/mg) while Aspergillus aculeatus C-08 showed maximum activity of cellobiase (113.9 +/- 3.9 U/mg). Extraction with sodium citrate buffer (pH 4.8) showed maximum cellulolytic enzyme activity as compared with other solvents tested. Partial purification of endoglucanase, exoglucanase, xylanase, and cellobiase resulted in 56.3% (1,112.5 U/mg), 48.4% (212.5 U/mg), 44% (4,492.3 U/mg), and 62% (705.0 U/mg) yield with an increase by 5.2-, 4.5-, 4.1-, and 5.0-fold as compared with crude extract. The results reveal that SMS from P. florida could be a potential and cost-effective substrate for production of cellulolytic enzymes from T. longibrachiatum A-01 and A. aculeatus C-08.
更多
查看译文
关键词
lignocellulolytic enzymes,Pleurotus florida,solid-state fermentation,spent mushroom substrate
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要