High-frequency vector harmonic mode locking driven by acoustic resonances.

H J Kbashi,S V Sergeyev, M Al-Araimi,A Rozhin,D Korobko,A Fotiadi

OPTICS LETTERS(2019)

引用 35|浏览33
暂无评分
摘要
A controllable passive harmonic mode locking (HML) in an erbium-doped fiber laser with a soliton pulse shaping using a single-wall carbon nanotube has been experimentally demonstrated. By increasing the pump power and adjusting the in-cavity polarization controller, we reached the 51st-order harmonic (902 MHz) having the output power of 37 mW. We attribute the observed high-frequency HML to the electrostriction effect caused by periodic pulses and leading to excitation of the radial and torsional-radial acoustic modes in the transverse section of the laser. The exited acoustic modes play the role of the bandpass filter, which stabilizes the high-frequency HML regime. (C) 2019 Optical Society of America
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要