Exact solution of the Schrodinger equation for photoemission from a metal

arxiv(2019)

引用 0|浏览16
暂无评分
摘要
We solve rigorously the time dependent Schr\"odinger equation describing electron emission from a metal surface by a laser field perpendicular to the surface. We consider the system to be one-dimensional, with the half-line $x<0$ corresponding to the bulk of the metal and $x>0$ to the vacuum. The laser field is modeled as a classical electric field oscillating with frequency $\omega$, acting only at $x>0$. We consider an initial condition which is a stationary state of the system without a field, and, at time $t=0$, the field is switched on. We prove the existence of a solution $\psi(x,t)$ of the Schr\"odinger equation for $t>0$, and compute the surface current. The current exhibits a complex oscillatory behavior, which is not captured by the "simple" three step scenario. As $t\to\infty$, $\psi(x,t)$ converges with a rate $t^{-\frac32}$ to a time periodic function with period $\frac{2\pi}{\omega}$ which coincides with that found by Faisal, Kami\'nski and Saczuk (Phys Rev A 72, 023412, 2015). However, for realistic values of the parameters, we have found that it can take quite a long time (over 50 laser periods) for the system to converge to its asymptote. Of particular physical importance is the current averaged over a laser period $\frac{2\pi}\omega$, which exhibits a dramatic increase when $\hbar\omega$ becomes larger than the work function of the metal, which is consistent with the original photoelectric effect.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要