Physics driven reduced order model for real time blood flow simulations

Sankaran Sethuraman, Lesage David, Tombropoulos Rhea,Xiao Nan,Kim Hyun Jin, Spain David,Schaap Michiel,Taylor Charles A.

arxiv(2019)

引用 0|浏览23
暂无评分
摘要
Predictive modeling of blood flow and pressure have numerous applications ranging from non-invasive assessment of functional significance of disease to planning invasive procedures. While several such predictive modeling techniques have been proposed, their use in the clinic has been limited due in part to the significant time required to perform virtual interventions and compute the resultant changes in hemodynamic conditions. We propose a fast hemodynamic assessment method based on first constructing an exploration space of geometries, tailored to each patient, and subsequently building a physics driven reduced order model in this space. We demonstrate that this method can predict fractional flow reserve derived from coronary computed tomography angiography in response to changes to a patient-specific lumen geometry in real time while achieving high accuracy when compared to computational fluid dynamics simulations. We validated this method on over 1300 patients that received a coronary CT scan and demonstrated a correlation coefficient of 0.98 with an error of 0.005 +- 0.015 (95% confidence interval: (-0.020, 0.031)) as compared to three-dimensional blood flow calculations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要