谷歌浏览器插件
订阅小程序
在清言上使用

Evolution of Two-Time Correlations in Dissipative Quantum Spin Systems: Aging and Hierarchical Dynamics

PHYSICAL REVIEW B(2019)

引用 2|浏览4
暂无评分
摘要
We consider the evolution of two-time correlations in the quantum XXZ spin-chain in contact with an environment causing dephasing. Extending quasi-exact time-dependent matrix product state techniques to consider the dynamics of two-time correlations within dissipative systems, we uncover the full quantum behavior for these correlations along all spin directions. Together with insights from adiabatic elimination and kinetic Monte Carlo, we identify three dynamical regimes. For initial times, their evolution is dominated by the system unitary dynamics and depends on the initial state and the Hamiltonian parameters. For weak spin-spin interaction anisotropy, after this initial dynamical regime, two-time correlations enter an algebraic scaling regime signaling the breakdown of time-translation invariance and the emergence of aging. For stronger interaction anisotropy, these correlations first go through a stretched exponential regime before entering the algebraic one. Such complex relaxation arises due to the competition between the proliferation dynamics of energetically costly excitations and their motion. As a result, dissipative heating dynamics of spin systems can be used to probe the entire spectrum of the underlying Hamiltonian.
更多
查看译文
关键词
Dipole Interactions
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要