谷歌浏览器插件
订阅小程序
在清言上使用

Size Dependence of Photocatalytic Hydrogen Generation for CdTe Quantum Dots

Journal of chemical physics online/˜The œJournal of chemical physics/Journal of chemical physics(2019)

引用 12|浏览18
暂无评分
摘要
CdTe quantum dots (QDs) are attractive photosensitizers for photocatalytic proton reduction due to their broad absorbance profile that can extend from the ultraviolet to near-infrared regions, providing access to a larger portion of the solar spectrum than possible with analogous CdSe and CdS QD photosensitizers. Here, the photocatalytic hydrogen (H-2) generation from various sizes of dihydrolipoic acid (DHLA)-capped CdTe QDs, ranging from 2.5 to 7.5 nm in diameter, and a molecular Ni-DHLA catalyst in aqueous solutions was evaluated, and an unusual size-dependent photocatalytic activity with CdTe QDs was observed. Under optimized conditions, using 3.4 nm CdTe-DHLA and a 1:20 ratio of QD/Ni-DHLA catalyst, as many as 38 000 turnover numbers (mol H-2 per mol QD) were achieved. However, below this critical size, the H-2 production efficiency decreased; this behavior is attributed to the rapid oxidation of the QD surface, resulting in detrimental surface trap states. These results are consistent with ultrafast transient absorption spectroscopic measurements, which suggest the presence of extremely fast charge-trapping processes in the oxidized CdTe-DHLA QDs. While fast electron transfer from CdTe-DHLA QDs is observed in the presence of the Ni-DHLA catalyst, the charge trapping processes occur on a competitive time scale, thus lowering the efficiency of the CdTe/Ni-DHLA H-2 production system. Understanding rapid charge trapping in CdTe QDs may help suggest potential improvements for the overall CdTe photocatalytic system.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要