谷歌浏览器插件
订阅小程序
在清言上使用

A New Off-Point-less Observing Method for Millimeter and Submillimeter Spectroscopy with a Frequency-Modulating Local Oscillator

Publications of the Astronomical Society of Japan(2019)

引用 5|浏览3
暂无评分
摘要
We propose a new observing method for single-dish millimeter and submillimeter spectroscopy using a heterodyne receiver equipped with a frequency-modulating local oscillator (FMLO). Unlike conventional switching methods, which extract astronomical signals by subtracting the reference spectra of off-sources from those of on-sources, the FMLO method does not need to obtain any off-source spectra; rather, it estimates them from the on-source spectra themselves. The principle uses high-dump-rate (10 Hz) spectroscopy with radio frequency modulation achieved by fast sweeping of a local oscillator of a heterodyne receiver. Because sky emission (i.e., off-source) fluctuates as 1 / f and is spectrally correlated, it can be estimated and subtracted from time series spectra (a timestream) by principal component analysis. Meanwhile, astronomical signals remain in the timestream since they are modulated to a higher time-frequency domain. The FMLO method therefore achieves (1) a remarkably high observation efficiency, (2) reduced spectral baseline wiggles, and (3) software-based sideband separation. We developed an FMLO system for the Nobeyama 45 m telescope and a data reduction procedure for it. Frequency modulation was realized by a tunable and programmable first local oscillator. With observations of Galactic sources, we demonstrate that the observation efficiency of the FMLO method is dramatically improved compared to conventional switching methods. Specifically, we find that the time to achieve the same noise level is reduced by a factor of 3.0 in single-pointed observations and by a factor of 1.2 in mapping observations. The FMLO method can be applied to observations of fainter (similar to mK) spectral lines and larger (similar to deg(2)) mapping. It offers much more efficient and baseline-stable observations compared to conventional switching methods.
更多
查看译文
关键词
atmospheric effects,methods: data analysis,methods: observational,techniques: spectroscopic,techniques: imaging spectroscopy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要