Therapeutic targeting MDR1 expression by RORγ antagonists resensitizes cross-resistant CRPC to taxane via coordinated induction of cell death programs.

MOLECULAR CANCER THERAPEUTICS(2020)

引用 12|浏览27
暂无评分
摘要
Overexpression of ATP-binding cassette subfamily B member 1 (ABCB1)-encoded multidrug resistance protein 1 (MDR1) constitutes a major mechanism of cancer drug resistance including docetaxel (DTX) and cabazitaxel (CTX) resistance in castration-resistant prostate cancer (CRPC). However, no therapeutics that targets MDR1 is available at clinic for taxane sensitization. We report here that retinoic acid receptor-related orphan receptor gamma (ROR gamma), a nuclear receptor family member, unexpectedly mediates MDR1/ABCB1 overexpression. ROR gamma plays an important role in controlling the functions of subsets of immune cells and has been an attractive target for autoimmune diseases. We found that its small-molecule antagonists are efficacious in resensitizing DTX and CTX cross-resistant CRPC cells and tumors to taxanes in both androgen receptor-positive and -negative models. Our mechanistic analyses revealed that combined treatment with ROR gamma antagonists and taxane elicited a robust synergy in killing the resistant cells, which involves a coordinated alteration of p53, Myc, and E2F-controlled programs critical for both intrinsic and extrinsic apoptosis, survival, and cell growth. Our results suggest that targeting ROR gamma with small-molecule inhibitors is a novel strategy for chemotherapy resensitization in tumors with MDR1 overexpression.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要