Application of CRISPR/Cas9 editing and digital droplet PCR in human iPSCs to generate novel knock-in reporter lines to visualize dopaminergic neurons.

Stem cell research(2019)

引用 11|浏览47
暂无评分
摘要
Human induced pluripotent stem cells (hiPSCs) have become indispensable for disease modelling. They are an important resource to access patient cells harbouring disease-causing mutations. Derivation of midbrain dopaminergic (DAergic) neurons from hiPSCs of PD patients represents the only option to model physiological processes in a cell type that is not otherwise accessible from human patients. However, differentiation does not produce a homogenous population of DA neurons and contaminant cell types may interfere with the readout of the in vitro system. Here, we use CRISPR/Cas9 to generate novel knock-in reporter lines for DA neurons, engineered with an endogenous fluorescent tyrosine hydroxylase - enhanced green fluorescent protein (TH-eGFP) reporter. We present a reproducible knock-in strategy combined with a highly specific homologous directed repair (HDR) screening approach using digital droplet PCR (ddPCR). The knock-in cell lines that we created show a functioning fluorescent reporter system for DA neurons that are identifiable by flow cytometry.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要