A dynamic culture platform enhances the efficiency of the 3D HUVEC-based tube formation assay.

BIOTECHNOLOGY AND BIOENGINEERING(2020)

引用 15|浏览6
暂无评分
摘要
Cell-based in vitro biological models traditionally use monolayer cell cultures grown over plastic surfaces bathing in static media. Higher fidelity to a natural biological tissue is expected to result from growing the cells in a three-dimensional (3D) matrix. However, due to the decreased rate of diffusion inherent to increased distances within a tridimensional space, proper fluidic conditions are needed in this setting to better approximate a physiological environment. To this aim, we here propose a prototypal dynamic cell culture platform for the automatic medium replacement, via periodic perfusion flow, in a human umbilical vein endothelial cell (HUVECs) culture seeded in a Geltrex (TM) matrix. A state-of-the-art angiogenesis assay performed in these dynamic conditions showed sizable effects with respect to conventional static control cultures, with significantly enhanced pro-(dual antiplatelet therapy [DAPT]) and anti-(EDTA) angiogenic compound activity. In particular, dynamic culture conditions (a) enhance the 3D-organization of HUVECs into microtubule structure; (b) accelerate and improve endothelial tube formation by HUVECs in the presence of DAPT; (c) are able to completely revert the blocking effects of EDTA. These evidence emphasize the need of setting proper fluidic conditions for a better approximation of a physiological environment as an appropriate evolution of current cell culture paradigms.
更多
查看译文
关键词
Bioreactor system,drug discovery,finite element modeling,HUVECs,periodic perfusion,tube formation assay
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要