谷歌浏览器插件
订阅小程序
在清言上使用

Macromolecular dextran sulfate facilitates extracellular matrix deposition by electrostatic interaction independent from a macromolecular crowding effect.

Materials science & engineering. C, Materials for biological applications(2019)

引用 28|浏览7
暂无评分
摘要
A faithful reconstruction of the native cellular microenvironment is instrumental for tissue engineering. Macromolecular crowding (MMC) empowers cells to deposit their own extracellular matrix (ECM) in greater amounts, and thus contributes to building tissue-specific complex microenvironments in vitro. Dextran sulfate (DxS, 500 kDa), a semi-synthetic sulfated polyglucose, was shown previously at a fractional volume occupancy (FVO) of 5.2% (v/v; 100 μg/ml) to act as a potent molecular crowding agent in vitro. When added to human mesenchymal stromal cell (MSC) cultures, DxS enhanced fibronectin and collagen I deposition several-fold also at concentrations with negligible FVO (<1% v/v). In a cell-free system, incubation of culture media supplemented with fetal bovine serum (FBS), purified fibronectin or collagen I with DxS led to a co-deposition of respective components, exhibiting a similar granular pattern as observed in cell culture. Aggregation of FBS components, fibronectin or collagen I with DxS was confirmed by dynamic light scattering, where an increase in hydrodynamic radius in the respective mixtures was observed. FBS- and fibronectin aggregates could be dissociated with increasing salt concentrations, indicating electrostatic forces to be responsible for the aggregation. Conversely, collagen I-DxS aggregates increased in size with increasing ion concentration, likely caused by charge screening of collagen I, which is net negatively charged at neutral pH, thus permitting weaker intermolecular interactions to occur. The incorporation of DxS into the ECM resulted in altered ECM topography and stiffness. DxS-supplemented cultures exhibited potentiated bioactivity, such as enhanced adipogenic and especially osteogenic differentiation under inductive conditions. We propose an alternative mechanism by which DxS drives ECM deposition via aggregation, and in an independent manner from MMC. A deeper understanding of the underlying mechanism will enable optimized engineering approaches for ECM-rich tissue constructs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要