谷歌浏览器插件
订阅小程序
在清言上使用

In-vitro Comparison of Hydroxyapatite Coatings Obtained by Cold Spray and Conventional Thermal Spray Technologies

Materials science & engineering C, Biomimetic materials, sensors and systems(2020)

引用 33|浏览23
暂无评分
摘要
Hydroxyapatite (HA) coatings onto Ti6Al4V alloy substrates were obtained by several thermal spray technologies: atmospheric plasma spray (APS) and high velocity oxy fuel (HVOF), together with the cold spray (CS) technique. A characterization study has been performed by means of surface and microstructure analyses, as well as biological performance. In-vitro tests were performed with primary human osteoblasts at 1, 7 and 14 days of cell culture on substrates. Cell viability was tested by MTS and LIVE/DEAD assays, cell differentiation by alkaline phosphatase (ALP) quantification, and cell morphology was analyzed by scanning electron microscopy. The HA coatings showed an increase of HA crystallinity from 62,4% to 89%, but also an increase of hydrophilicity from similar to 32 degrees to 0 degrees, with the decrease of the operating temperature of the thermal spray techniques (APS > HVOF > CS). Additionally, APS HA coatings showed more surface micro-features than HVOF and CS HA coatings; cells onto APS HA coatings showed faster attachment by acquiring osteoblastic morphology in comparison with the rounded cell morphology observed onto CS HA coatings at 1 day of cell culture. HVOF HA coatings also showed proper cell adherence but did not show extended filopodia as cells onto APS HA coatings. However, at 14 days of cell culture, higher cell proliferation and differentiation was detected on HA coatings with higher crystallinity (HVOF and CS techniques). Cell attachment is suggested to be favoured by surface micro-features but also moderate surface wettability whereas cell proliferation and differentiation is suggested to be highly influenced by HA crystallinity and crystal size.
更多
查看译文
关键词
Atmospheric plasma spray,High velocity oxy fuel,Cold spray,Hydroxyapatite coatings,In-vitro tests,Joint prosthesis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要