Machine-learned metrics for predicting the likelihood of success in materials discovery

arxiv(2020)

引用 24|浏览5
暂无评分
摘要
Materials discovery is often compared to the challenge of finding a needle in a haystack. While much work has focused on accurately predicting the properties of candidate materials with machine learning (ML), which amounts to evaluating whether a given candidate is a piece of straw or a needle, less attention has been paid to a critical question: are we searching in the right haystack? We refer to the haystack as the design space for a particular materials discovery problem (i.e., the set of possible candidate materials to synthesize), and thus frame this question as one of design space selection. In this paper, we introduce two metrics, the predicted fraction of improved candidates (PFIC), and the cumulative maximum likelihood of improvement (CMLI), which we demonstrate can identify discovery-rich and discovery-poor design spaces, respectively. A combined classification system, composed of the CMLI and PFIC metrics, is then used to identify optimal design spaces with high precision, and thus show the potential to significantly accelerate ML-driven materials discovery.
更多
查看译文
关键词
Computational methods,Condensed-matter physics,Materials Science,general,Characterization and Evaluation of Materials,Mathematical and Computational Engineering,Theoretical,Mathematical and Computational Physics,Computational Intelligence,Mathematical Modeling and Industrial Mathematics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要