Deep Penetration of Targeted Nanobubbles Enhanced Cavitation Effect on Thrombolytic Capacity.

BIOCONJUGATE CHEMISTRY(2020)

引用 26|浏览10
暂无评分
摘要
Sonothrombolysis with microbubbles can enhance the dissolution of thrombus through the cavitation effect of microbubbles under ultrasound irradiation. However, the detailed mechanism of thrombolysis with microscaled or nanoscaled bubbles is still not so clear. This study compared the thrombolytic capacity of cRGD-targeted or nontargeted bubbles with different particle sizes combined with urokinase (UK). The size of the microscaled bubbles (Mbs or Mbs-cRGD) was mostly approximately 3 mu m, while the nanoscaled bubbles (Nbs or Nbs-cRGD) were mainly around 220 nm. In vitro testing was performed on an extracorporeal circulation device that mimics human vascular thromboembolism. The rabbit clots in Mbs with UK groups showed peripheral worm-like dissolution, while the clots in Nbs with UK groups showed internal fissure-like collapse. In addition, the thrombolysis rate of Nbs-cRGD with the UK group was the highest. Furthermore, the scanning electron microscopic images showed that the fibrin network was the most severely damaged by the Nbs-cRGD, and most of the fibrin strands were dissolved. Especially, the Nbs-cRGD can penetrate much deeper than Mbs-cRGD into the thrombus and loosen the fibrin network. Taken together, benefiting from the specific identification and deep penetration to thrombus, our developed novel targeted Nbs may have broad application prospects in the clinic.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要