Activity Coefficients And Solubility Of Cacl2 From Molecular Simulations

JOURNAL OF CHEMICAL AND ENGINEERING DATA(2020)

引用 14|浏览20
暂无评分
摘要
We obtain the activity coefficients and lower bounds to the solubility of CaCl2 in aqueous solutions at temperatures between 298.15 and 473.15 K using molecular simulations with three previously developed nonpolarizable force fields. We find that a scaled-charge force field gives incorrect activity coefficients at low concentration and has a different absolute chemical potential than experiments, but still predicts an accurate solubility for the calcium chloride dihydrate. The two full-charge models have chemical potentials and activity coefficients closer to experiments, but there is considerable variation between them, with the chemical potentials differing by over 100 kJ-mol(-1). The slow dynamics of the full-charge models at high concentrations are unrealistic and require advanced sampling methods to obtain the activity coefficients. We find that development of polarizable models is likely necessary to accurately represent both thermodynamic and transport properties of divalent electrolyte solutions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要