Transition From High-Entropy To Cu-Based (Tizrnbni)(1-X)Cu-X Metallic Glasses

JOURNAL OF APPLIED PHYSICS(2019)

引用 7|浏览23
暂无评分
摘要
A study of a transition from conventional multicomponent alloys to high-entropy alloys (HEAs) is important both for understanding the formation of HEAs and for proper evaluation of their potential with respect to that of conventional alloys. We report the main result of such a study performed on (TiZrNbNi)(1-x)Cu-x metallic glasses (MG) over a broad concentration range x <= 0.52 encompassing both high-entropy-MGs and Cu-based MGs. A comprehensive study of the composition, homogeneity, thermal stability, atomic structure, electronic structure, and magnetic susceptibility of 11 alloys has been performed. Thermal analysis revealed a rather weak variation of thermal parameters and glass forming ability with x. The study of the atomic structure showed a linear variation of average interatomic distances and atomic volumes close to those predicted by Vegard's law. The coordination numbers and atomic packing fractions were constant throughout the explored concentration range. The electronic density of states (DOS) showed a split-band structure with DOS close to the Fermi level dominated with d-states of Ti, Zr, and Nb. Accordingly, magnetic susceptibility decreased linearly with x and extrapolated to that of Cu. Thus, the studied alloys show ideal solution behavior similar to that of binary Cu-Ti, Zr, and Hf MGs. The results are compared with those for (TiZrNbCu)(1-x)Ni-x MGs and (CrMnFeCo)(1-x)Ni-x alloys and their impact on understanding the transition from high-entropy-MGs to conventional MGs with the same composition is briefly discussed. Published under license by AIP Publishing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要