Chrome Extension
WeChat Mini Program
Use on ChatGLM

Investigation of the Ledge Structure in Aluminum Smelting Cells

JOM(2019)

Cited 1|Views41
No score
Abstract
In aluminum smelting cells, ledges freeze on to cell walls from the cryolitic bath when the temperature drops below the bath liquidus point. Modern cell design and control cause a suitable ledge profile to form and be maintained, in order to protect the cell walls from corrosive liquids (molten salts and Al metal) and ensure efficient current distribution and cell heat balance. During cell operation, a significant ledge, freezing and melting does occur following heat balance changes due to batch operations. The ledge formation mechanism has been studied at the laboratory scale in our previous work. It shows a linkage between the rate and directional nature of ledge growth and its structure as affected through a superheat change. An open ledge structure can dominate the laboratory ledge material growth or melt it out quickly when the superheat either decreases or increases, respectively. This paper begins the investigation of industrial ledge samples, in terms of structure and composition, primarily to identify whether the same ledge formation mechanism exists in industrial cells. In this study, as expected, the industrial ledge shows more complexity than the laboratory ledge; the open structure is different compared to the laboratory ledge due to the inclusion of carbon dust, a large thermal gradient across the ledge, and sufficient aging of the ledge in the cell. The comparison between the laboratory ledge and the industrial ledge has provided insight into the ledge growth mechanism in aluminum smelting cells.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined