Atomic-Level Active Sites of Efficient Imidazolate Frameworks-Derived Nickel Catalysts for CO2 Reduction

JOURNAL OF MATERIALS CHEMISTRY A(2019)

引用 67|浏览22
暂无评分
摘要
Nickel and nitrogen co-doped carbon (Ni-N-C) has emerged as a promising catalyst for the CO2 reduction reaction (CO2RR); however, the chemical nature of its active sites has remained elusive. Herein, we report the exploration of the reactivity and active sites of Ni-N-C for the CO2RR. Single atom Ni coordinated with N confined in a carbon matrix was prepared through thermal activation of chemically Ni-doped zeolitic imidazolate frameworks (ZIFs) and directly visualized by aberration-corrected scanning transmission electron microscopy. Electrochemical results show the enhanced intrinsic reactivity and selectivity of Ni-N sites for the reduction of CO2 to CO, delivering a maximum CO faradaic efficiency of 96% at a low overpotential of 570 mV. Density functional theory (DFT) calculations predict that the edge-located Ni-N2+2 sites with dangling bond-containing carbon atoms are the active sites facilitating the dissociation of the C-O bond of the *COOH intermediate, while bulk-hosted Ni-N-4 is kinetically inactive. Furthermore, the high capability of edge-located Ni-N-4 being able to thermodynamically suppress the competitive hydrogen evolution is also explained. The proposal of edge-hosed Ni-N2+2 sites provides new insight into designing high-efficiency Ni-N-C for CO2 reduction.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要