Transcriptome analysis of the molecular mechanism of Chrysanthemum flower color change under short-day photoperiods.

Plant Physiology and Biochemistry(2020)

引用 20|浏览8
暂无评分
摘要
Chrysanthemum [Dendranthema morifolium Tzvel.] is an ornamental plant grown under long-term artificial cultivation conditions. In production, early Chrysanthemum blossoms are often promoted by artificial short-day treatment. However, we found that the flower colour of Chrysanthemum blossoms induced by artificial short-day treatment was lighter than those induced by the natural photoperiod. To explore the intrinsic mechanism of colour fading in flowers, we performed full-length transcriptome sequencing of Chrysanthemum morifolium cv. ‘Jinbeidahong’ using single-molecule real-time sequencing and RNA-sequencing under natural daylight (ND) and short daylight (SD) conditions. The clustered transcriptome sequences were assigned to various databases, such as NCBI, Swiss-Prot, Gene Ontology and so on. The comparative results of digital gene expression analysis revealed that there were differentially expressed transcripts (DETs) in the four stages under ND and SD conditions. In addition, the expression patterns of anthocyanin biosynthesis structural genes were verified by quantitative real-time PCR. The major regulators of the light signalling ELONGATED HYPOCOTYL5 genes were markedly upregulated under ND conditions. The patterns of anthocyanin accumulation were consistent with the expression patterns of CHI1 and 3GT1. The results showed that the anthocyanin synthesis is tightly regulated by the photoperiod, which will be useful for molecular breeding of Chrysanthemum.
更多
查看译文
关键词
Chrysanthemum,Full-length transcriptome sequencing,Functional annotation,Artificial short-day treatment,Anthocyanin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要