谷歌浏览器插件
订阅小程序
在清言上使用

3D Cellular-Resolution Imaging in Arteries Using Few-Mode Interferometry

Light, science & applications/Light Science & Applications(2019)

引用 26|浏览44
暂无评分
摘要
Cross-sectional visualisation of the cellular and subcellular structures of human atherosclerosis in vivo is significant, as this disease is fundamentally caused by abnormal processes that occur at this scale in a depth-dependent manner. However, due to the inherent resolution-depth of focus tradeoff of conventional focusing optics, today's highest-resolution intravascular imaging technique, namely, optical coherence tomography (OCT), is unable to provide cross-sectional images at this resolution through a coronary catheter. Here, we introduce an intravascular imaging system and catheter based on few-mode interferometry, which overcomes the depth of focus limitation of conventional high-numerical-aperture objectives and enables three-dimensional cellular-resolution intravascular imaging in vivo by a submillimetre diameter, flexible catheter. Images of diseased cadaver human coronary arteries and living rabbit arteries were acquired with this device, showing clearly resolved cellular and subcellular structures within the artery wall, such as individual crystals, smooth muscle cells, and inflammatory cells. The capability of this technology to enable cellular-resolution, cross-sectional intravascular imaging will make it possible to study and diagnose human coronary disease with much greater precision in the future.
更多
查看译文
关键词
Biophotonics,Fibre optics and optical communications,Imaging and sensing,Physics,general,Applied and Technical Physics,Atomic,Molecular,Optical and Plasma Physics,Classical and Continuum Physics,Optics,Lasers,Photonics,Optical Devices
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要