Global Stability And Hopf Bifurcation In A Delayed Viral Infection Model With Cell-To-Cell Transmission And Humoral Immune Response

INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS(2019)

引用 4|浏览2
暂无评分
摘要
We have developed a class of viral infection model with cell-to-cell transmission and humoral immune response. The model addresses both immune and intracellular delays. We also constructed Lyapunov functionals to establish the global dynamical properties of the equilibria. Theoretical results indicate that considering only two intracellular delays did not affect the dynamical behavior of the model, but incorporating an immune delay greatly affects the dynamics, i.e. an immune delay may destabilize the immunity-activated equilibrium and lead to Hopf bifurcation, oscillations and stability switches. Our results imply that an immune delay dominates the intracellular delays in the model. We also investigated the direction of the Hopf bifurcation and the stability of the periodic solutions by applying normal form and center manifold theory, and investigated the existence of global Hopf bifurcation by regarding the immune delay as a bifurcation parameter. Numerical simulations are carried out to support the analytical conclusions.
更多
查看译文
关键词
Cellular infection, time delay, global stability, Lyapunov functionals, Hopf bifurcation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要