Protein methylome analysis in Arabidopsis reveals regulation in RNA-related processes.

Journal of Proteomics(2020)

引用 3|浏览31
暂无评分
摘要
Protein methylation has been proposed as an important post-translational modification, which occurs predominantly on lysine and arginine residues. Recent discoveries have revealed that protein methylation is also present on non-histones besides histones, and plays critical roles in regulating protein stability and function. However, proteome-wide identification of methylated proteins in plants remains unexplored. Here, we present the first global survey of monomethyl arginine, symmetric and asymmetric dimethyl arginine, and monomethyl, dimethyl, trimethyl lysine modifications in the proteomes of 10-day-old Arabidopsis seedlings through a combination of immunoaffinity purification and mass spectrometry analysis. In total, we identified 617 methylation sites which mapped to 412 proteins, with 263 proteins harboring 381 lysine methylation sites and 149 proteins harboring 236 arginine methylation sites. Among them, 607 methylation sites on 408 proteins were novel findings. Motif analysis revealed that glycine preferentially flanked methylated arginine residues, whereas aspartate and glutamate enriched around mono- and dimethylated lysine sites. Methylated proteins were involved in a variety of metabolic processes, showing significant enrichment in RNA-related metabolic pathways including spliceosome, RNA transport, and ribosome. Our data provide a global view of methylated non-histone proteins in Arabidopsis, laying foundations for elucidating the biological function of protein methylation in plants.
更多
查看译文
关键词
Arginine methylation,Lysine methylation,Protein methylation,Non-histone,Immunoaffinity,Arabidopsis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要