Cross-Batch Memory For Embedding Learning

2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR)(2020)

引用 234|浏览102
暂无评分
摘要
Mining informative negative instances are of central importance to deep metric learning (DML), however this task is intrinsically limited by mini-batch training, where only a mini-batch of instances is accessible at each iteration. In this paper, we identify a "slow drift" phenomena by observing that the embedding features drift exceptionally slow even as the model parameters are updating throughout the training process. This suggests that the features of instances computed at preceding iterations can be used to considerably approximate their features extracted by the current model. We propose a cross-batch memory (XBM) mechanism that memorizes the embeddings of past iterations, allowing the model to collect sufficient hard negative pairs across multiple mini-batches - even over the whole dataset. Our XBM can be directly integrated into a general pair-based DML framework, where the XBM augmented DML can boost performance considerably. In particular, without bells and whistles, a simple contrastive loss with our XBM can have large R@1 improvements of 12%-22.5% on three large-scale image retrieval datasets, surpassing the most sophisticated state-of-the-art methods [37, 26, 2], by a large margin. Our XBM is conceptually simple, easy to implement - using several lines of codes, and is memory efficient - with a negligible 0.2 GB extra GPU memory. Code is available at: https://github.com/MalongTech/research-xbm.
更多
查看译文
关键词
embedding learning,deep metric learning,hard-mining ability,DML methods,mini-batch training,slow drift phenomena,cross-batch memory mechanism,XBM,GPU memory,informative negative instance mining,image retrieval
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要