New high-resolution near-infrared observations of the asymmetric jet of the massive young stellar object G192.16-3.82

arxiv(2019)

引用 0|浏览8
暂无评分
摘要
The process of massive star formation is tightly connected with the appearance of molecular outflows, which interact with surrounding interstellar medium and can be used as a proxy to study the accretion process of material onto forming massive stars. We aim to characterize the morphology and kinematics, as well as the driving source, of the molecular outflow from the massive young stellar object G192.16-3.82, which is associated with the giant Herbig-Haro flow HH 396/397, spanning over 10 pc. We present new, high spatial and spectral resolution observations of the complex at near-infrared wavelengths ($2.0-2.3$ $\mu$m) using the LUCI near-infrared camera and spectrograph with the Advanced Rayleigh guided Ground layer adaptive Optics System, ARGOS, at the Large Binocular Telescope. We discover a string of tightly collimated knots of H$_2$ emission, spanning the full observed field of $\sim4^\prime$, and determine an excitation temperature of $2600\pm500$ K for the brightest knot, which is situated close to the driving source. We show that the kinematics of the knots are consistent with them being ejected from the central source on timescales of a few times $10^{2-3}$ years. The driving source (or sources) of the outflow is obscured at near-infrared wavelengths, possibly due to a thick accretion disk. The distribution of H$_2$ emission in the region, together with high mass-infall rates reported recently, indicate G192 has undergone several large accretion bursts in the recent past.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要