Novel approach reveals genomic landscapes of single-strand DNA breaks with nucleotide resolution in human cells

NATURE COMMUNICATIONS(2019)

引用 30|浏览35
暂无评分
摘要
Single-strand breaks (SSBs) represent the major form of DNA damage, yet techniques to map these lesions genome-wide with nucleotide-level precision are limited. Here, we present a method, termed SSiNGLe, and demonstrate its utility to explore the distribution and dynamic changes in genome-wide SSBs in response to different biological and environmental stimuli. We validate SSiNGLe using two very distinct sequencing techniques and apply it to derive global profiles of SSBs in different biological states. Strikingly, we show that patterns of SSBs in the genome are non-random, specific to different biological states, enriched in regulatory elements, exons, introns, specific types of repeats and exhibit differential preference for the template strand between exons and introns. Furthermore, we show that breaks likely contribute to naturally occurring sequence variants. Finally, we demonstrate strong links between SSB patterns and age. Overall, SSiNGLe provides access to unexplored realms of cellular biology, not obtainable with current approaches.
更多
查看译文
关键词
DNA damage and repair,Genomic analysis,Genomics,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要